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The plane problem of rectilinear crack propagation in an elastic medium 

subjected to arbitrary variable loads is considered. The position of the crack 

tip is given as an arbitrary monotonically increasing differentiable function 
of time such, that the velocity of crack propagation at any time is less than 
the Rayleigh wave velocity. An expression is obtained for the stresses on the 

crack plane ahead of the tip, particularly the stress intensity factors at its tip. 

A fracture criterion permitting determination of the law of crack tip propagation un- 
der given external conditions is used to analyze crack propagation in fracture mechanics. 

In particular, the Griffith energy criterion which can be written as [l] 

can be used for an ideally brittle, linearly elastic medium. 
Here n is the shear modulus, a and b are the longitudinal and transverse wave velo- 

cities, v is the velocity of crack propagation, 7 (v) is the effective surface energy 

which is considered a characteristic function of the crack propagation rate for a given 

material, and ka, kz, k, are the stress intensity factors for the three main modes of frac- 

ture : tensile, inrplane shear, and anti-plane shear (longitudinal shear), respectively. The 
function R (s) vanishes at the points s = & c-r, where c is the Rayleigh wavevelocity. 

In order to apply the criterion (0.1) to a specific problem, the stress intensity factors 

ki must be known as functionals of the crack tip motion for which the solution of the 
corresponding dynamic problem of elasticity theory must be obtained for an arbitrary 
crack tip motion. This has been done in [2 3 for the particular case of an anti-plane shear 
crack. This case is simplest since only transverse waves polarized parallel to the crack 
edge originate. Recently Freund p] found an expression for the intensity factor for a 
semi-infinite tensile crack being propagated at piecewise-constant velocity under the 
effect of static loads by using a clever semi-inverse method. Considering propagation 
at an arbitrary variable velocity as the limit case of a piecewise-constant velocity, he 
arrived at the deduction that the expression he obtained is valid even in the generalcase. 
The Freund result possesses two disadvantages. Firstly, this result has no foundation . 
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Indeed, the stress intensity factor is defined as the limit 

ki = lim 1/Z (z - 1 (t)) oi (2, t) (0.2) 

where 1 (tj is the coordinate of the crack tip at time t and CQ (2, t) are the stress vec- 

tor components of the continuation of the crack. In order to calculate the intensity fac- 
tor at the tip of a crack propagating in an arbitrary way, we should first pass to the limit 

from the piecewise-constant to the variable velocity, and then evaluate the limit (0.2). 
At the same time Freund first passed to the limit according to (0.2) for the crack being 

propagated at the piecewise-constant velocity, and only then performed the passage to 
the limit to the arbitrary propagation velocity. The possibility of changing the order of 
passing to the limit is not evident and is nowhere given a foundation in p] ( l ). How- 
ever, as will be shown below, the Freund result turns out to be true. The second disadvan- 
tage is that Freund succeeded in obtaining the solution only for particular cases of time- 

independent loads p], and plane-wave loading of a semi-infinite crack [4] , which per- 
mits consideration of finite crack propagation even for these particular and most simple 
loads only for times preceding the time of longitudinal wave arrival from one tip of the 

crack to its second tip. 

1. Formulation of the problem. Let an infinite elastic medium with shear 
modulus p and longitudinal and transverse wave propagation velocities u and b , respec- 

tively, fill the space outside the crack 

zt = 0, 1_(t)-CJ$<~&) --<%<oo (1.1) 

Let us assume that all the fractions applied to the medium are independent of the 
coordinate xa (plane problem). We write the equations of motion and Hooke’s law as 

The dots denote 

%B3 = pu,“, ota,a = pu3", p = pb-2 U.2) 

%P = p.(&, lx” - 2h,A + %p + %x) 

cJ3a = p3,a, a, B, h = I,& x=alb 

differentiation with respect to time t here, and the subscript after the 

comma denotes differentiation with respect to the corresponding spatial coordinate. 

Here and henceforth, summation is over the repeated Greek subscripts. Summation is not 
carried out over the Latin subscripts. The effect of body forces is not taken into account 

in the equations of motion. 
If body forces act on the medium and the initial conditions are not homogeneous, then 

by using the linearity of the equations we can proceed as follows. Let oik’, Ui” denote 
the solution corresponding to the same body forces and initial conditions but for a medi- 
um without a crack. The construction of such a solution raises no difficulties in princi- 
ple. Let us represent the solution of the problem for a medium with a crack as the sum: 

Oik+(JikQ, Uk + Uk". Then ILL, oik will satisfy the equations of motion in the ab- 

sence of the mass forces (1.2),and homogeneous initial conditions 

Uh = Uk ‘~0 for if\<0 0.3) 

*) Freund [4] recently examined the case of plane stress wave incidence on a semi- 
infinite crack being propagated, by the same method. The remarks made here remain 
valid also relative to [4]. 
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Let the stress resuitants - j?iO(xst t) be given on the crack ; then the boundary con- 
ditions for CTik are 

(Ti(Za, t) - Gil (0, 22, t) = - Pi(X?, t) Cl.41 

where 
for Xl = 0, 2_(t) < 2-s< 1, (t) 

Pi(“st t) = pi’(Xs, 1) + oir’(Q, ‘9 ‘) 

With respect to the functions I_ (2), E+ (t), g oveming the crack propagation laws, 
we assume 

- c < l_’ (t) f 0, 0 < 2,’ (t) < C (1.5) 

These conditions can be weakened in the case of a shear crack when all the stress result- 
ants applied to the medium are parallel to the x,-axis (i. e. the crack tip) by replacing 

c in (1.5) by b. 
Let us solve (1.2) by using a double Laplace transform in the coordinate us and time 

t. Let us denote the transforms of the functions by the same letters as the originals but 
making the distinction explicit (where necessary) by writing the arguments 

e-qs:zLi (x1, x2, t) &rs dt 0.6) 

oik ($1, 4, p) = [Cpt’ r e-(ls’6jk (X1, XT, t)clx,dt 
0 -cc 

For brevity,by Oi(Q, p) we denote the Laplace transform of the boundary values of the 

stress vector components on the zs-axis: oi(Zs, t) = oi,(O, x2, t). 
Equations (1.2) are solved in a standard manner, and the solution is 

r, = rb = b-2 - $ 

Let wi(zs, t) denote the discontinuity in the displacement across the x,-axis 

Wi(X2, t) = Ui( SO, 52, t) - Ui(- 09 527 t) 

and wi(q, p) the corresponding Laplace transform, We then obtain from (1.7) 

(Ji(49 P> + PK(i) (q / P&if47 P) = 0 0.8) 

&I, (4 = 
pb’LR (s) 

42) (4 = 
pbzR (4 

2pf/a3:t [2 Jfb-2 ’ 
&f (4 = ‘Izp t/b-:! (1.9) 
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The expressions (1.7) would yield the solution of the problem if the functions oi(g, p), 
could be calculated from the boundary conditions, i. e. if the stresses were known on the 
whole 2s -axis. However, conditions (1.4) yield values of the stresses only on the crack 
surfaces. But then the displacements should be continuous outside the crack, i. e. 

Wt(X2, t) = 0 for x2 < Z_(t), 1, (t) < x2 (1.10) 

The problem would therefore reduce to seeking the stresses oi(x2, t) on the continu- 

ation of the crack from conditions (1.4) and (1.10) and the functional equation (1.8). 
The functions K(i) (s) are encountered in solving problems of elastic wave diffraction 

by a free half-plane, a crack. It can be shown that the representation 

R (s) = (k2 - a-“)(~-~ - s-‘)S(s)s (- s) (1.11) 

is valid for the function R (s) . 

The function S (s) is regular in the comp!ex s ptane slit along a segment of the real 
axis between the points s = - u-l and s = - b-l, and tends to unity as s - 03. The 

expansion (1.11) is the basis of the solution of (1.8) by the Wiener-Hopf method for a fixed 
or semi-infinite crack being propagated at constant velocity. Although the Wiener-Hopf 

method is not directly applicable to the problem of nonuniform crack propagation, the 
expansion (1.11) permits construction of the solution even in this case by reducing the 
problem to the solution of an integral equation encountered in supersonic flow theory and 
used in [2] to solve the problem of the anti-plane shear crack, 

2, Solution for a semi-infinite crack. Let us examine the particular 
case of a semi-infinite crack when l_ (t) = - 00. In this case, we seek 2 (t) instead 
of I+ (t). Moreover, for brevity let us omit the subscript on the coordinate x2. Then the 
boundary conditions (1.4) and (1.10) become 

oi(z, t) =-_pi(“~ t) for --<.r<l(t) 

Wi(5, t) = 0 for l(l)<x<m 

It is necessary to find the solution of (1.8) under the conditions (2.1) such that 

k< (t) 
Oi (X7 t, = 1/2 (x - z (t)) +0(i) for x--+1(t)+O 

We introduce the new functions Fi(z, t), Gi(s, t), defined as follows: 

f’a (4, z-4 = 
?a-‘+q/p vb-l+qlp s_l 

c-l + 4 I P ( ) $- G(qyP), a=1,2 

F3 @,P) = ~3 (q, 14 

(2.1) 

(2.2) 

Gdq, P) = 1/wdq, P) 

Then (1.8) becomes 
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In the physical z and t var~ables,the relationships (2.2) are 

Fi(x, t) = At+ai z Si(X, t) - (2.4) 

(f -&s)+[D(-C-l) I/C-‘-U-‘jP=F5 6i(Z-_17, t- 

0 
b-1 

V----- 
_ tis 

s - n-1 r/b-l - s 

c-1-s s 
Qf (5 - iJ,t --sq)dqds 

1 
a--L 0 

D (s) = (S (S))_1, (D (s)} = D (s + i0) -j- D (s - to> 
Gi (XV t) = B~+w* s Ci [W (G t) + 

c, = l/,l/.& (1 - x-s), a = 1. 2, G = l/z P 

The transforms (2.4) possess the remarkable property that for x ( t(t) (i.e. on the 
crack) F~(x, t) are calculated in terms of values of Vi(Z’, t’), where 2’ < 1 (t) (let 

us recall that I (8) < c) by assumption). In exactly the same way, values of Gl(s, t) 
on the continuation of the crack are evaluated in terms of values of wi on the continua- 
tion of the crack. Hence, we obtain in place of conditions (2.1) 

F&G t) = - ftfs, t) for z< 2 tt) (2.5) 

G&c, t) = 0 for x > 2 (t) 

Here ft(z, t) is a known function related to pi(z, t) by the transform (2.4) 

ff(G t) = Ai+pr (2.6) 

The convolution type transforms (2.4) are invertible. The inverse transforms are 

wi (2, t) = (B+‘)-l Gi = Ci-l (Gi (x, t) - (1 - 8is) x 

The problem is therefore reduced to finding the function Fi(Z, t) from (2.3) and the 
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boundary comditions (2.5). The asymptotic behavior of Fi(z, t) as x -+ Z(t) is ana- 
logous to the behavior of U&, t) 

Fi (xv t) = 

The intensity factors mi(t) are here evaluated in terms of k,(r) by using (2.4) in the 

form .w+ (t) = ki (t) (8is + (1 - 6is) D (s) ” - ’ r)!3<)i,e (‘)” ) (2.8) 

where v (t) = Z’(t) is the crack propagation velocity at time t. 
Let us write Eq. (2.3) in physical variables by taking the inverse Laplace transform. 

In particular, because of (2.5) we have for z,>l (to) 

1 

ss 

Fi (CC, t) dx dt 

-;i- L\i pi” (to 
= 0 

- tp - (xa - 2)” (2.9) 

(Ai is the triangle viz(t,, - t)” - (5, - 2)” > 0, 0 < t < to). 
This equation agrees exactly with (2.5) in [il. The method of solving it is no differ- 

ent from that used in [Z]. Using the fact that for z,, > vit, + Z(0) the crack is not 
incident in the domain A !, it can be proved that Fi(x, t)e 0 for 2 > 2:it + Z(0). 
Furthermore, let us introduce the characteristic variables 

E = (flit - LX) / r/z; 9 = (N + 5) I 1/z 

and let q*(E) denote the coordinate of the crack edge in the characteristic variables, 

i. e. the solution of the equation 

‘1* - 

Then we write Eq. (2.9) as 

= 0 for ‘70 > q* (40) 

Or inverting the Abel operator with respect to E 

for %>V*(E) 

Since F,(g, rl) are known for q < t]*(t), by virtue of (2.5), we rewrite this equation 

as 

The solution of this Abel integral equation in the physical x and t variables reduces to 

Fib, to) = ci+fi = ~ /_ I (t+) 

l(y) 

\ (2.10) 

*--Vito 

where t* is the solution of the equation 

Vii!, - X0 = Vit* - l(t*) 

NOW, Eqs. (2.10). (2.6) and (2.7) yield the solution of the problem for a semi-infinite 

crack. In particular, we obtain from (2.10) 
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Or by virtue of (2.8) 

&i(t) = $. bisf+ + 

Evidently ps can be written in place of fs in the expression for k, , since these functions 

agree because of (2.6). 
Now, in particular, the Freund results can be given a foundation. The expression in the 

parentheses in (2.11) depends only on the crack propagation velocity v (t) and becomes 

one for B (t) = 0. At the same time the auantities 
uit 

Jf/z * 
k,” (I, t) = y-- s ( fi Z-G,f-~ :* 

> 
0 

depend on the position of the crack tip 1 as on a parameter and are, as is easily surmised, 

the stress intensity factors calculated for the same loads but for a fixed crack, whose edge 
is at ‘Lhe point x - I from the very beginning. Therefore, (2.11) can be rewritten as 

k 0) = Ki (u it)) k’i (f if), t) (2.12) 

Ki 04 - 6,, J 1 -q)+(l (1 - v U) I4 p - u (t) f Vi 

The expression (Z-12) agrees formally with the results Freund obtained for the particular 
cases of a static load PJ and plane wave incidence on the crack [6]. and generalizes his 
results to the case of a semi-infinite crack subjected to arbitrary time-dependent loads. 

3, Solutfon for a finite crack. The solution (2.10) is also valid for a crack 
of finite length up to the time when the waves from the left tip of the crack reach the 

right tip, i. e. for t less than tlf , where. tl+ is the solution of the equation 

Z+(tl+) - at2 = 1_ (0) (3.1) 

IYnder this condition, the integration in (2.6) and (2.10) (where it is everywhere neces- 

sary, certainly, to write Z+(1)) in place of I (t)) is over the crack surface. In the general 

case, the stresses are expressed for z > Z+(t) in a form analogous to (2.7) 

(T&r, t) = (A~)-*&%, 0 (3.2) 

The values of Fi+ are expressed for r > Z+(t) in terms of the values for z < Z+(t) 

by Eq. (2.10) 
Fi+@o, t,) = Ci’Fi+ (3.3) 

where we write Z+(t), t+* in place of 2 (t), t*, and the values of Fi+ are expressed 

for z < l+(t) in terms of values of oi(z, t) for x < Z+(t) by the relationship (2.4) 

Fi+(z, t) = A~“~cT~(z, t) (3.4) 

By repeating the discussion of Sect, 2, we analogously obtain that the stresses for 
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2 < i_ (t) are expressed as 

oi (5, t) = (Ai-)-‘Fi- ES Fi- (~7 t) + (1 - 6i3) X (3.5) 

& \l,s(- s)) 

t/s 

V--& $& 1 Fi- (5 + rl, r - srl) drlds 
a--L 0 

The values of Pi-($, r) for z < Z_(t) are expressed in terms of the values for r: > 

Z_(t) by the equation 

F; (x,, to) = C,-F,- =_ (3.6) 
l-(t-*) 

1 x0 - z - 

n VL (La*) - 50 
5, to + - 

1/z - I_ (1-t)’ dx 

‘i z(l - z 

where t_*is the solution of the equation 

vit, + 20 = vit_* + z-(t-*) (3.7) 

and the values of Fi-(CX, t) for z > Z_ (t) are expressed in terms of oi(x, t) for 

z > Z_(t) .by a relationship analogous to (2.4) 

Fi- (5, t) = A,-Gi ~ Gi(IC, t)- (3.8) 

(1 - 6iS) ~ [D (- C-l) I/C-' - a-l ~/c-l - b-l s’ Gi (X ~ rl, t - 

0 

b-1 its 

c-lq)dq + -& 1 {D(-s)} “yl’$’ 1 O~(Z+TJ, t-q)dqds 
I 

Cl-’ 0 

For t < t, -, where tr - is the solution of the equation 

Z_ (tr-) + at,- = 1, (0) (3.2) 

the integration in (3.6) and (3.8) is over the crack surface, where the ot(z, 1’) are given 

and equal - pi(z, t), so that the relationships (3.5)- (3.8) yield values of oi(Z, t) 
directly for 5 < f_ (2). If these values have been calculated, then (3.2)- (3.4) permit 

evaluation of Fi+(s, t) and ui(x, t) in the time range tl+ < t < t$, where rs+ is 

the solution of the equation 

I, (tz+) - a&+ - tl-) = z_ (t1-) (3. IO) 

Analogically, when J: > I, (t) , for calculating oi(%, t) for t < tltt Eqs. (3.5), (3.6) 

allow us to calculate oi(Z, t) for 2 < Z_ (t) and tl- < t < t,-, where rs- is the 
solution of the equation 

z_ (tz-) + a(t,- - tlf) = l+(Q) (3.11) 

In general, by using (3.2)- (3.4) and (3. 5)- (3.8) alternately, the stresses outside the 
crack can be calculated in terms of the load on its surface in a finite number of steps. 
This procedure for calculating the stresses on the crack continuation corresponds to 
multiple wave diffraction by the crack edges. 

The stress intensity factors on the crack edges are expressed in a form analogous to 

(2.11) 
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Let us determine the sequence of times tkf by the recursion relations 

to* = 0, z-& (tk*) - IT (&I) = -t a(t,If: - t%,) (3.13) 

Then ifthe cracktipmotion Jf (t) has already been calculated for t < t&r ,then the func- 

tions Zk (t) are found for t8-r ( t < t,f as the solution of differential equations 
obtained by substituting the values (3.1) for the stress intensity factor in the fracture 

condition (0. l), where we should put 21 = f J&’ (t). 
Therefore, the relationships (0. l), (3. Z), (3.4)- (3.8) and (3.12) permit the complete 

solution to be obtained for the problem of crack propagation for any time. Knowing 
oi(2, t), the displacements can then be calculated at an arbitrary point of the medium 

by means of (1.7). 
The numerical realization of this solution and obtaining physical deductions for a spe- 

cific kind of load will be a very complex problem, Indeed, even for t < t$ the evalu- 

ation of quintuple integrals is required to obtain the stresses ui(r, L) outside the crack, 

and triple integrals to obtain the intensity factors. It is apparently more convenient to 

use difference methods in place of this analytical solution in order to obtain the stresses. 

However, these difference methods possess the disadvantage that they do not permit ob- 
taining the stress intensity factors directly, and therefore, studying the laws of crack mo- 

tion. Use of combination of a difference method to compute the stresses and the analy- 

tical expression (3.12) for the stress intensity factors would probably have the best pros- 

pects. 
In conclusion, let us note that the solution simplifies for i Z= 3 and reduces to that 

obtained in 123. 

The author is grateful to V, I. Osaulenko for valuable discussions. 
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