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The plane problem of rectilinear crack propagation in an elastic medium
subjected to arbitrary variable loads is considered, The position of the crack
tip is given as an arbitrary monotonically increasing differentiable function
of time such that the velocity of crack propagation at any time is less than
the Rayleigh wave velocity, An expression is obtained for the stresses on the
crack plane ahead of the tip, particularly the stress intensity factors at its tip,

A fracture criterion permitting determination of the law of crack tip propagation un-
der given external conditions is used to analyze crack propagation in fracture mechanics,
In particular, the Griffith energy criterion which can be written as [1]
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can be used for an ideally brittle, linearly elastic medium,

Here p is the shear modulus, « and b are the longitudinal and transverse wave velo-
cities, v is the velocity of crack propagation, 7T (v) is the effective surface energy
which is considered a characteristic function of the crack propagation rate for a given
material, and ki, k2, k3 are the stress intensity factors for the three main modes of frac-
ture: temsile, ineplane shear, and anti-plane shear (longitudinal shear), respectively, The
function R (s) vanishes at the points s = 4= ¢~!, where ¢ is the Rayleigh wave velocity,

In order to apply the criterion (0,1) to a specific problem, the stress intensity factors
k&; must be known as functionals of the crack tip motion for which the solution of the
corresponding dynamic problem of elasticity theory must be obtained for an arbitrary
crack tip motion, This has been done in [2] for the particular case of an anti-plane shear
crack, This case is simplest since only transverse waves polarized parallel to the crack
edge originate, Recently Freund [3] found an expression for the intensity factor for a
semi~infinite tensile crack being propagated at piecewise~constant velocity under the
effect of static loads by using a clever semi~inverse method, Considering propagation
at an arbitrary variable velocity as the limit case of a piecewise=-constant velocity, he
arrived at the deduction that the expression he obtained is valid even in the generalcase,
The Freund result possesses two disadvantages, Firstly, this result has no foundation ,
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Indeed, the stress intensity factor is defined as the limit
k= 1lim V2 — (1) 0; (2, 1) (0,2)

where ! (1} is the coordinate of the crack tip at time ¢ and o; (z, ¢) are the stress vec~
tor components of the continuation of the crack, In order to calculate the intensity fac-
tor at the tip of a crack propagating in an arbitrary way, we should first pass to the limit
from the piecewise-constant to the variable velocity, and then evaluate the limit (0, 2),
At the same time Freund first passed to the limit according to (0, 2) for the crack being
propagated at the piecewise-constant velocity, and only then performed the passage to
the limit to the arbitrary propagation velocity, The possibility of changing the order of
passing to the limit is not evident and is nowhere given a foundation in [3](*), How-
ever, as will be shown below, the Freund result turns out to be true, The second disadvan-
tage is that Freund succeeded in obtaining the solution only for particular cases of time-
independent loads [3], and plane-wave loading of a semi~infinite crack [4], which per-
mits consideration of finite crack propagation even for these particular and most simple
loads only for times preceding the time of longitudinal wave arrival from one tip of the
crack to its second tip,

i, Formulation of the problem, Let an infinite elastic medium withshear
modulus [ and longitudinal and transverse wave propagation velocities ¢ and b, respec-
tively, fill the space outside the crack

=0, L (1) < a2 << L (), — 00 < 23 << ® 1.1)

Let us assume that all the fractions applied to the medium are independent of the

coordinate X3 (plane problem), We write the equations of motion and Hooke's law as
Oup3 = PUa y Ogaa = PUg , p = pb~? (1.2)
Oap = WMOap (¥* — 2)urn + Uap + Upa)
O30 = WU3 ., a, 537"‘_—1112; M——'——‘a/b

The dots denote differentiation with respect to time ¢ here, and the subscript afterthe
comma denotes differentiation with respect to the corresponding spatial coordinate,
Here and henceforth, summation is over the repeated Greek subscripts, Summation is not
carried out over the Latin subscripts, The effect of body forces is not taken into account
in the equations of motion,

If body forces act on the medium and the initial conditions are not homogeneous, then
by using the linearity of the equations we can proceed as follows, Let 0;;°, u;° denote
the solution corresponding to the same body forces and initial conditions but for a medi-
um without a crack. The construction of such a solution raises no difficulties in princi-
ple. Let us represent the solution of the problem for a medium with a crack as the sum:
6;x+0:ix°, Up + uy°. Then uy, Oix will satisfy the equations of motion in the ab-
sence of the mass forces (1,2),and homogeneous initial conditions

u, =up =0 for t<CO0 (1.3)

*) Freund [4] recently examined the case of plane stress wave incidence on a semi-
infinite crack being propagated, by the same method, The remarks made here remain
valid also relative to [4],
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Let the stress resultants — p;°(xy, £} be given on the crack; then the boundary con=

ditions for o;
R OTOIRETE G (g ) = 04y (0, 3y 1) = — Palay, 1) €.4)
for 2 =0, L(2) < <L (1)

pi(xz’ t)y = Pi°(%as t) -+ 031 (%ys 0, t)
With respect to the functions I_ (1), I, (), goveming the crack propagation laws,
we assume

where

—e< 1 (1) K0, oL (<e (1.5)
These conditions can be weakened in the case of a shear crack when all the stress result-
ants applied to the medium are parallel to the rg=axis (i, e, the crack tip) by replacing
¢ in(1,5) by b,
Let us solve (1,2) by using a double Laplace transform in the coordinate x, and time
t. Let us denote the wransforms of the functions by the same letters as the originals but
making the distinction explicit (where necessary) by writing the arguments

o0

wi(@, g, p) = et § ey (21, 2, 1) dryat (1.6)
] —cc

Sik (xl’ q, p) = S ert S equ'dik (xl, T, t) dxgdt
¢ —cc

For brevity,by 0;(q, p) we denote the Laplace transform of the boundary values of the
stress vector components on the Z,-axis: 02y, t) = 0;(0, x,, ?).
Equations (1, 2) are solved in 2 standard manner, and the solution is

1 =[xy
Uy (1, 4, P) = AN (8 RalpTy (2 -—%— rarsGe (@, p) — (1,7

o
(b - 7@) r451 (g, p)sgn x;) -

—fay 2 2
Lot (b — 206, (g, p) + 2 Loreai (g, Phsgnas))
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(2% (xlv q, P) = - FP—;;

s —'l/‘“ 2,, rb—]/b""'—-—
Let w{x,, ) denote the discontinuity in the displacement across the x,-axis
wi(xzv t) = ui( +01 Loy t)_' ui(_ 01 Loy t)
and w;(g, p) the comresponding Laplace transform, We then obtain from (1,7)

e Pusy(q, p)sgnz,

0i(g, p) + pKw (g/ p)wilg, p) =0 (.8
b2R (s 2R
Koy ()= s Ko©) =F2le, Ko@="mV 5=+ a.9
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The expressions (1, 7) would yield the solution of the problem if the functions 6;(q, p),
could be calculated from the boundary conditions, i, e, if the stresses were known on the
whole z,-axis, However, conditions (1, 4) yield values of the stresses only on the crack

surfaces, But then the displacements should be continuous outside the crack, i, e,

wiTy, 1) =0 for @, < 1(t), I, (t) < g, (1.10)

The problem would therefore reduce to seeking the stresses o;(x,, ) on the continu-
ation of the crack from conditions (1,4) and (1,10) and the functional equation (1, 8).

The functions K (s) are encountered in solving problems of elastic wave diffraction
by a free half-plane, a crack, It can be shown that the representation

R (s) = (b7 — a~)(c™% — s73)S(s)S (— ) (1,11)
1 v 4E2 2 a2 b2 _—Fz
S (s) = exp (——n' S arctg 3 Vi(zaza_ bK)Z & &—ﬁs )

is valid for the function R (s),

The function S (s) is regular in the complex s plane slit along a segment of the real
axis between the points s = — 2~! and s = — 6~!, and tends to unity as s — co. The
expansion (1,11) isthe basis of the solution of (1,8) by the Wiener-Hopf method for a fixed
or semi-infinite crack being propagated at constant velocity, Although the Wiener-Hopf
method is not directly applicable to the problem of nonuniform crack propagation, the
expansion (1, 11) permits construction of the solution even in this case by reducing the
problem to the solution of an integral equation encountered in supersonic flow theory and
used in [2] to solve the problem of the anti-plane shear crack,

2, Sotution for a semi-infinfte crack, Let usexamine the particular
case of a semi-infinite crack when I_ (f) = — oo. In this case, we seek [ (f) instead
of I_ (). Moreover, for brevity let us omit the subscript on the coordinate x,, Then the
boundary conditions (1, 4) and (1,10) become

0z, t) = — pia, 1) for —oo<a L) (2.1)
wi(z, t) =0 for () <z<Coo
It is necessary to find the solution of (1, 8) under the conditions (2.1) such that
ke (1)
si(z, t) = m+ (1) for ==l 40

We introduce the new functions F(z, t), Gi(z, t), defined as follows:

1 1
Fa.(Qyp): Vd +Z£i_‘:/p+Q/P Sl( )51(% )’ a=1,2 (2.2)

Fs(q, p) =03 (g D)

Gu , — u(i—%_ﬁ)(c‘l__q/p) —q ~
(P 4Va“—q/p1/b‘1—q/ps( P )w“(q’p)’ a=1,2

Gs(g, p) = Yanwy(g, p)
Then (1, 8) becomes
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Fi(q,P)+G(q’P) 0, vy =vg =b, UVs=4a (2. 3)

3 V D% — qa 2
in the physical & and ¢ variables,the relationships (2, 2) are
Fi(x, t) = Aoy ==5,(x, t) — (2.4)
et
(1 — ;) % [D (—eyVei—al Vc“—b"‘s sG@—mt—
0
bt t/s
L T Y= b d
cnydn + 5= S {D(—s) Vs — S 53 (% — Wt —sM) dndS]
a—~t 0

D(5) = (S (D () = D(s+ i0) + D (s — i0)
G; (z, t) = Bitw; == C; [w; (x, t) +

bt t/s

) _ —
(1 —80) 5 o | (S (=9 5= ﬂym_s§mw+mtsmﬂhl

a1

Co=ap(1 =%, a=1,2 Cy=1p

The transforms (2, 4) possess the remarkable property that for z << I(¢) (i,e, on the
crack) Fi(z, t) are calculated in terms of values of o;(z’, ¢'), where z' <C1(f) (let
us recall that () <Cc) by assumption), In exactly the same way, values of Gy(zx, t)
on the continuation of the crack are evaluated in terms of values of w; on the continua-
tion of the crack, Hence, we obtain in place of conditions (2,1)

Fyz, t) = — filz, t) for z <18 (2.5)
Gz, t) =0 for z>>1()
Here fi(z, t) is a known function related to pi(x, £) by the transform (2,4)
Tz, t) = Aitpy (2.6)
The convolution type transforms (2, 4) are invertible, The inverse transforms are
Si(x, t) = (bA-")“1 Fi=F(x t)+(1 — 6,-3)><j 2.7
b t/s
1 ct—s *
T‘—-}-‘{S( 8)} v OSFi(x M, £ — sn)dnds

w; (z, t) = (B{P)‘l Gi = Ci-l (G, (x, ) ~ (1. — (5,'3) X
ct

;’—t[p (—e WAy b“SGi(x—}-n, t—ct—n)dn +

0
_1:? bS {D(— )} Vs—“;, _‘_/i’" — tg' Gi(x+ 1, t —sn)dy dsD
a=t 9

The problem is therefore reduced to finding the function F(z, ) from (2, 3) and the
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boundary comditions (2, 5), The asymptotic behavior of F(z, f) as 2 — [(¢) is ana-
logous to the behavior of 0;(Z, ?)

m, (£)
Fi(x,t) —W+0(1) for x—1 ()40

The intensity factors m;(t) are here evaluated in terms of k:(?) by using (2.4) in the

form Vi—v e VI=v®/b )
) e (2.8)

where v (f) = I'(¢) is the crack propagation velocity at time ¢,
Let us write Eq, (2, 3) in physical variables by taking the inverse Laplace transform,
In particular, because of (2. 5) we have for z,>>1 (t,)

me() = k() (8 + (1 — 89 D [

1 F, (x, t)ydz dt 0
(A; is the triangle p2(t, — #)2 — (z, — 2)2 >0, 0 < t < ty).

This equation agrees exactly with (2, 5) in [2], The method of solving it is no differ-
ent from that used in [2]. Using the fact that for Zo>>v;t, -+ I(0) the crack is not
incident in the domain A;, it can be proved that Fi(z, f)= 0 for z > v;t - [(0).
Furthermore, let us introduce the characteristic variables

t=t—2)/V2 n=@t+z)/V2

and let M*(E) denote the coordinate of the crack edge in the characteristic variables,
i, e, the solution of the equation

5 (n* 8
w—t=V ( V3 )
Then we write Eq, (2, 9) as
£ o
S dz § F@ndn o .
P s Vao—z V—n or o> n* Eo)
Or inverting the Abel operator with respect to &

R E )
S M =0 for Mo >N*E)

d, Vme—n
Since F;(§, m) are known for m << 1*(&), by virtue of (2, 5), we rewrite this equation
as o g omdn §5’ £ 6 m)dn
YVe—n Vno—n
n*E) -t
The solution of this Abel integral equation in the physical  and ¢ variables reducesto
" —
Ot — 1 o w—z\YIiilH —= 2.10
Fi('IO’to)—Cl}‘l:n}/mx‘S fl(xv Lo v, ) o — dzx (2.10)

where t* is the solution of the equation
Vity — Ty = vit* - l(t*)

Now, Egs, (2.10),(2,6) and (2, 7) yield the solution of the problem for a semi-infinite
crack, In particular, we obtain from (2, 10)
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Vs TR
by) = ———p—— -z, tg—
e ; 5(¢o)§-v hf (x ° Y ) Vi (to) — =
Or by virtue of (2, 8)
ki(t) = V* [ l/i =@ o
v} .

ang(_ N =i VITemm {4 (10— t___i"_‘_i’”_
(1 6;3)5( v(t)) Vl——v(t)/a Vi—v(t)/b] s fl( () x’ ) V:U

Evidently py can be written in place of f; in the expression for kg, since these functions
agree because of (2,8),

Now, in particular, the Freund results can be given a foundation, The expression in the
parentheses in (2, 11) depends only on the crack propagation velocity » (¢) and becomes
one for » {t) = 0. At the same time the quantities

ke, ) = —— V Sf(l—-x,t—%) da
e i

Vz
depend on the position of the crack tip / as on a parameter and are, as is easily surmised,

the stress intensity factors calculated for the same loads but for a fixed crack, whose edge
is at the point z = ! from the very beginning, Therefore, (2,11) can be rewritten as

ki ()= Ki (@ (1) B (L (D) 0) (2.12)
__(_) R (1—1’(1‘)/6)}/1~-v(t)/vi
Ki(v)-bis 1 - +(1 ;3) 9(’—0(1) V1”?J(t)_/a]/1-—v(t)/b

The expression {2, 12) agrees formally with the results' Freund obtained for the particular

cases of a static load [3] and plane wave incidence on the crack [#], and generalizes his
results to the case of a semi~infinite crack subjected to arbitrary time~dependent loads,

3, Solution for & finite crack, The solution (2,10) is also valid for a crack
of finite length up to the time when the waves from the left tip of the crack reach the
right tip,i.e, for ¢ less than £, where. ;" is the solution of the equation

L{tF) — atyt =1 (0) (8.1)

Under this condition, the integration in (2, 6) and (2, 10) (where it is everywhere neces-
sary, certainly, to write Z,(#)) in place of [ (¢)) is over the crack surface, In the general
case, the stresses are expressed for x > I (¢) in a form analogous to (2,7)

oilz, t) = (AF)Fi(z, 1) (3.2)
The values of F;* are expressed for 2 > [,(¢) in terms of the values for = << [ ()
by Eq, (2.10 ,
’ ) Fit(zy, to) = CFHF;T (3.3)

where we write [ (2), ¢, * in place of [ (¢), t*, and the values of F;" are expressed
for x < [ (#) interms of values of 0(z, ¢) for x << I,(2) by the relationship (2, 4)

Fit(z, ) = Ajtoi(z, ©) (3.4)

By repeating the discussion of Sect, 2, we analogously obtain that the stresses for
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x < I_(t) are expressed as

Gi(z, ) = (A VF, =F (7, 1) + (1 — 8;3) X (3. 5)
bt t/s
1 0 -1 __ _
ﬁ—at_g {S(—s) Vs—-ail V:_l_s SFi (x +m, t — sn)dnds
a—1 b

The values of F;7(2, ) for z << I_(f) are expressed in terms of the values for r >
1_(#) by the equation

Fi (0, t)) = CF; = (3.6)
1 a zo— 2\ Vo= %
ey ————— . , 1 — - - d
n VI_@* — 2 S Fi (w ot 41 ) To—2 g

xo+vito
where ¢_*is the solution of the equation
vity + Lo = vit_* -+ L(t_*) (3.7
and the values of F;(z, t) for > I_ (t) are expressed in terms of o;(z, t) for
z > 1_(t) by a relationship analogous to (2.4)

Frx, )=A6=0(z,t)— (3.8)
ct
R T e A A ECE L

0

1 Vi Ve =y ¢
cmydn + 5 { (D (—9) T A \ i@+ m, t—sn)dnds]
0

a=1

For t <C t;~, where !~ is the solution of the equation
L (t7) + at;~ = L, (0) (3.9)

the integration in (3, 6) and (3, 8) is over the crack surface, where the o;(z, ¢} aregiven
and equal — p;(z, t), so that the relationships (3, 5)— (3, 8) yield values of 0;(z, t)
directly for x <C [_ (#). If these values have been calculated, then (3, 2)— (3, 4) permit
evaluation of Fi*(x, f) and o;(x, t) in the time range #;" << t << t;5, where 5" is
the solution of the equation
L (t5) — alt” — 7)) = L (1) (3.10)

Analogically, when x > I, (2, for calculating ¢;(x, t) for ¢ < ;" Eas, (8. 5),(3.6)

allow us to calculate o;(x, ) for t<C I (f)and ¢~ << t<C 1,7, where %, isthe

solution of the equation
I (t,) + a(ty™ — 7)) = L(4") (3.11)

In general, by using (3,2)— (3, 4) and (3, 5)— (3. 8) alternately, the stresses outside the
crack can be calculated in terms of the load on its surface in a finite number of steps,
This procedure for calculating the stresses on the crack continuation corresponds to
multiple wave diffraction by the crack edges,

The stress intensity factors on the crack edges are expressed in a form analogous to

(2.11) B -
O =L2[o )Y 1 FER -t (FLm)x @
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vt

UAF L0/ VIFL Ol ¢ d
—_ S L Fx{l,(t U .
VIFL By TFi, /b § ’ (i()¢x’t )V:?]

o
i
Let us determine the sequence of times £, by the recursion relations
tt =0, Iy (E) — Iz (i) = + a(ty — tF) (3.13)

Then ifthe crack tipmotion Iy () has already been calculated for ¢ <C ti-1,then the func-
tions [y (f) are found for 5, < t <t as the solution of differential equations
obtained by substituting the values (3,1) for the stress intensity factor in the fracture
condition (0, 1), where we should put v = == [+"(2).

Therefore, the relationships (0. 1), (3, 2), (3.4)— (3. 8) and (3,12) permit the complete
solution to be obtained for the problem of crack propagation for any time, Knowing
6:(z, t),the displacements can then be calculated at an arbitrary point of the medium
by means of (1,7),

The numerical realization of this solution and obtaining physical deductions for a spe=~
cific kind of load will be a very complex problem, Indeed, even for : < uT the evalu-
ation of quintuple integrals is required to obtain the stresses oj(z,t) outside the crack,
and triple integrals to obtain the intensity factors, It is apparently more convenient to
use difference methods in place of this analytical solution in order to obtain the swresses,
However, these difference methods possess the disadvantage that they do not permit ob=
taining the stress intensity factors directly, and therefore, studying the laws of crack mo-
tion, Use of combination of a difference method to compute the stresses and the analy-
tical expression (3, 12) for the stress intensity factors would probably have the best pros-
pects,

In conclusion, let us note that the solution simplifies for { == 3 and reduces to that
obtained in [2],

The author is grateful to V, I, Osaulenko for valuable discussions,
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